
DRAFT: September 19, 2007 @ 3:54pm

Functional Visitors Revisited

Bryan Chadwick
Northeastern University

chadwick@ccs.neu.edu

Therapon Skotiniotis
Northeastern University
skotthe@ccs.neu.edu

Karl Lieberherr
Northeastern University
lieber@ccs.neu.edu

Abstract
In object-oriented programming the visitor design pattern allows
for the addition of new operations on a data hierarchy, but lends it-
self to scattered traversal code and makes visitors difficult to com-
bine. Previous attempts to solve these issues have separated traver-
sal code from the data structure but still face a lack of modularity
in visitor computation making it difficult– if not impossible– to du-
plicate the flexibility of hand written, monolithic methods. In this
paper we present a reformulation of the visitor pattern that intro-
duces functional style traversals and visitor methods. Our modifi-
cations increase the context information available to visitor meth-
ods by way of the implicit stack of the recursive traversal, remov-
ing the need for side effects in visitor definitions. This gives vis-
itors more flexibility during traversal, while their functional na-
ture allows for modular, compositional solutions, leading to more
reusable designs. To utilize these ideas we introduce a simple new
functional visitor-oriented language, which allows us to build func-
tional visitors without the syntax burdens of most object-oriented
languages. To support visitor composition in our language we in-
troduce five useful visitor combinators that can be used to develop
self contained visitors and discuss motivating examples in our new
language.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

General Terms Design Patterns, Functional Composition, Visi-
tors

Keywords visitor pattern, traversals, functional visitors

1. Introduction
The visitor design pattern [7] is a well known solution that supports
extensions to the set of operations performed on a data structure.
Typically, a visitor encapsulates an operation’s behavior, and the
data structure encodes traversal of the hierarchy. However, in its
original incarnation the visitor pattern admits two limitations: (i)
data structure extension requires regeneration of traversal code
and (ii) finer traversal control must be hard-coded inside visitors
yielding implementations that are difficult to reuse.

For example, consider the situation where we have a number
of Containers that we would like to check for capacity violations
(Figure 3). A container has a capacity and a list of Items—
essentially a multi-tree where the leaves are Elements and the

[Copyright notice will appear here once ’preprint’ option is removed.]

nodes are Containers. We would like to check that the combined
weight of a container’s items is not greater than its capacity
and return the violated containers. Figure 1 (left) shows the relevant
portions of the container example with traversal code based on the
visitor design pattern.

In order to identify violating containers our visitor needs to
maintain a running sum of weights for each container encountered
during traversal. After traversing a Container, we need to obtain
its total weight and check if this is greater than the container’s ca-
pacity. Once we have the information to detect over-full containers
there are three general options for filtering them:
1. Add filtering code to the after container method, placing violat-

ing containers in the visitor’s store.
2. Use two visitors in separate visitor passes; the first visitor cal-

culates container violations and marks them, the second visitor
collects and returns marked containers.

3. Modify the return type of the after container method to return
a violated container, or a distinguished value (e.g., null) for no
violation.
The first option creates a monolithic method, tangling violation

detection and filtering inside the visitor’s implementation, decreas-
ing its reusability. The second option incurs extra runtime cost with
two traversals and tangles filtering code by relying on the marking
of the data structure, even if done externally, e.g., with a hashtable.

The third option separates violation detection and filtering; fil-
tering code can become part of accept methods, which results in
tangled traversal code, or part of a second visitor whose visit meth-
ods wrap the violation detection visitor, collecting flagged contain-
ers. Using a visitor to carry out the filtering looks promising, but re-
quires the outer visitor to be parameterized in some way over the in-
ner visitor, including the types of instances it’s interested in and its
results. If we try to reuse visitors with multiple wrappers these pa-
rameterizations quickly become difficult to manage. We can, how-
ever, generalize these ideas by making return types of traversals and
visitor methods consistent.

Our functional visitors use similar traversal code but return
values that are also functional visitor instances. By adjusting the
traversal contexts of the classic pattern we can provide access to
visitor instances both before and after the traversal of an object’s
sub-structure. Visitors can take advantage of this fact to provide
flexible implementations while remaining completely functional.
With functional visitors, deciding if a container is over-full does
not require a stack, but rather a comparison of visitor instances be-
fore and after traversing a container object. Once we have func-
tional visitors and traversals it is easy to provide combinators, an
abstraction over visitor compositions, that require little type infor-
mation from programmers. To complete our container filtering we
simply define a second visitor that collects containers and combine
it with our violation detection visitor using a Conditional Combina-
tion (Section 5), which uses a violation detection visitor to decide
whether or not to execute the collector. This allows us to break our

DRAFT: September 19, 2007 @ 3:54 pm 1 2007/9/19

class Visitor{
void b e f o r e(Object o){}
void a f t e r (Object o){}

}
class Container extends Item {

/* ... */
void a c c e p t(Visitor v){

v. b e f o r e(this);
items. a c c e p t(v);
v. a f t e r (this);

}
}
class ItemPair extends ItemList{

/* ... */
void a c c e p t(Visitor v){

v. b e f o r e(this);
first. a c c e p t(v)
rest. a c c e p t(v)
v. a f t e r (this);

}
}

class FVisitor{
FVisitor b e f o r e(Object o, FVisitor v){return v;}
FVisitor a f t e r (Object o, FVisitor v){return v;}

}
class Container extends Item {

/* ... */
FVisitor a c c e p t(FVisitor v){

FVisitor bVis = v. b e f o r e(this,v),
iVis = items. a c c e p t(bVis);

return bVis. a f t e r (this, iVis);
}

}
class ItemPair extends ItemList{

/* ... */
FVisitor a c c e p t(FVisitor v){

FVisitor bVis = v. b e f o r e(this,v),
fVis = first. a c c e p t(bVis),
rVis = rest. a c c e p t(fVis);

return bVis. a f t e r (this, rVis);
}

}

Figure 1. Container traversal related code; Left: standard visitor pattern. Right: functional visitor pattern.

solution into two modular, reusable visitors: a violation detector,
and a general collector; combining them to achieve the desired re-
sult.

In order to separate developers from some of the details of vis-
itor implementation we introduce a new functional visitor-oriented
language for writing and constructing visitor solutions.1 Using this
language we can develop each operation as a functional visitor; en-
capsulating collaborations as visitor combinations, leading to mod-
ular, reusable implementations.

The rest of this paper is structured as follows: the next section
describes our traversal modification; Section 3 introduces our new
functional visitor language; Section 4 expands on our solution
to the Container example; Section 5 defines each of our visitor
combinators; Section 6 discusses a more significant example of
a SAT solver implementation. We review related work in Section
7 and conclude with Section 8, discussing some possibilities for
future work.

2. Functional Traversals
In this section we introduce our modification to the visitor pattern
traversal in the setting of the Container example. We show hand-
written traversal methods in the style of the visitor pattern, but
take this chance to point out that our functional traversals are also
applicable to other forms of specification [14, 11]. Notably, we
have modified a version of DJ [13] to dynamically traverse Java
data structures in our functional style without any modifications to
underlying classes.

The basic visitors and interesting traversal code for our data
structure are defined in Figure 1 with both the canonical and new
functional visitors in Java. This is different from the general notion
of the pattern, as here we use before and after methods to expand
visitor expressibility.2 The visitor methods take two arguments:
the current object we are traversing and a visitor instance. For
after methods the second argument is the visitor instance returned
from sub-traversals. In before methods it is the same instance as
the one on which the method is invoked (i.e., this). We define
visitor methods on the most general type, Object, and assume
a mechanism for specific type based dispatch.3 Each class of our

1 Formalization of the entire functional visitor language is forthcoming
2 Similar to the hierarchical visitor [3] (Section 7)
3 Similar to Palsberg and Jay’s Walkabout[15]

bVis

Pre−traversal

pVis.before(thisContainer, pVis);

bVis.after(thisContainer, iVis)

Post−traversal

items.accept(bVis)

Figure 2. Container traversal flow diagram

data structure defines an accept method that controls the traversal
order of its members.

In the visitor pattern, the accept method wraps the sub-traversals
of its enclosed members with calls to the visitor’s before and after
methods. The difference in the case of the FVisitor traversal
is not only the existence of a return value, but also the visitor on
which we call the after method; we give access to the recursive
stack by calling after on the visitor returned from the call to before.
As an argument we pass the FVisitor that has been returned
from sub-traversals. This means the after method is called on the
same visitor instance that was passed to sub-traversals. In the case
of a Container, we can compare the visitor states before and
after the sub-traversal of items. Similarly, the accept method of
ItemPair follows this convention, wrapping traversals of first
and rest with calls to before and after.

Figure 2 is a visual representation of the accept method of the
Container class showing how the result of each method flows
into the next. We use dotted arrows for returned values and solid
arrows for forwarded values. Pre-traversal represents the visitor
that is passed to, and Post-traversal represents the visitor returned
by, the accept method. Figure 4 (right) gives a specific example
of how this traversal can be used effectively in our new visitor-
oriented language.

Since traversal is orthogonal to visitors and their combination,
for the rest of our paper we assume a traversal implementation that
follows the calling pattern described here and is independent of
visitor executions.

DRAFT: September 19, 2007 @ 3:54 pm 2 2007/9/19

3. Visitor Language
We briefly introduce our visitor language and the differences be-
tween our function definitions and the method syntax found in most
object-oriented languages, i.e., Java or C#.

visitor Count{
int total;
Count(int t){ total = t; }
Count a f t e r (Object o, Count vis)
{ Count(vis.total + 1); }

int getTotal(){ total; }
}

The code above shows our syntax for a visitor, Count, which
counts the number of Objects it visits—remember that the vis-
itor instance passed to the after method is the result of possible
sub-traversals. This visitor closely resembles a Java style class def-
inition with a few changes. To simplify syntax we assume that all
functions are public unless specified private. We view construc-
tors as functions with global scope instead of treating them with a
special new syntax as in most object-oriented languages. The other
major difference is in the body of functions, where we allow as-
signments only in constructors; normal function bodies consist of
any number of local definitions, zero in this case, followed by a re-
sult expression. We also eliminate the need for the return keyword,
since we do not allow void functions inside visitors.

For special purpose visitors, receivers and wrappers, we intro-
duce new syntax. A receiver (Figure 8) is a visitor that expects
to be combined with another visitor. We declare the name of the
receiver followed by the type of the visitor we expect to receive
and the usual visitor code for constructors and methods. When a
receiver expects to be combined with a pair of visitors we use an-
gle brackets and commas to nest pairs of types. Fields and methods
are defined as usual with the exception of the second argument to
before and after methods where we use the same pair syntax to pro-
vide bindings, with names instead of types. The left of the pair is
an instance of the visitor type we expect to receive and the right
is a visitor instance of the receiver type. We provide access to the
values of both visitors in these methods to allow communication
between them.

A wrapper (Figure 6) is a visitor that encapsulates another vis-
itor or combination. Wrappers declare their name followed by a
binding, an initialization expression, and a visitor body. The bind-
ing can be a single name or a pair, which can also be parame-
terized, adding arguments to the wrapper’s constructor (Figure 9
FormulaReduce). Because visitor methods are forwarded to the
wrapped visitor and initialization is given by an expression, there
is no need to declare constructors or before and after methods. The
names in the binding are used to unfold the wrapped visitor and
are useful for accessing combinations within method bodies as in
Figures 6 and 9. The meaning of these visitors will be explained
further when we discuss combinations in Section 5.

4. Example: Container Checking
To demonstrate the uses of the new functional visitor pattern we
present our solution to the Container Checking [20] problem and
refactor it to obtain more reusable visitors. As before we have
a number of containers that we would like to check for capacity
violations. Figure 3 is a UML class diagram for this scenario.

Our problem is to check that containers have not been over
filled, i.e., that the combined weight of a Container’s items is
not greater than its capacity. Specifically, first we would like to
count the number of over-full containers in a single traversal while
computing the results of sub-containers in the same pass. This prob-
lem is of interest because it is simple to write a recursive function
that traverses and calculates the desired values, but is difficult to

Element

+weight: int

ItemPair

ItemList

Empty

Item

Container

+capacity: int

ite
m

s

re
st

fi
rs

t

Figure 3. Container example UML class diagram

solve without side-effects when traversal and computation are sep-
arated.

To aid our discussion, Figure 4 shows two possible solutions:
one in the case of the imperative traversal, and one in the case of
the functional traversal, written in our visitor language.

These two visitors compute the same result: the visitor returned
from the traversal contains the total weight of all Elements and
the number of overfull (or violated) containers. The difference
being that the imperative visitor operates via side-effects and must
explicitly control a stack, whereas the functional visitor makes
use of the implicit stack of the recursive traversal. In addition to
not having to maintain a stack we have also gained the ability to
remove all side-effects from our visitor methods. This localizes
state changes and can lead to more understandable control flow,
which helps in designing modular visitor solutions. Given modular
visitors, we have the opportunity to compose functional visitors
into larger units when building a specialized solution.

Figure 6 shows two wrappers that constitute our modular solu-
tions to the container checking problem. They use a Conditional
Combination to both count and collect any violated containers.
Checker counts overfull containers and Filter collects over-
full containers. The other visitors involved in the combinations,
Count (Section 3) and Collect, blindly complete their tasks
without knowledge of the combination. Using combinations and
wrappers we can divide our visitors into modular units to imple-
ment our intended functionality.

5. Visitor Combinators
In building visitor solutions it is common for computations to
require overlapping traversals of a data structure. Sometimes the
functionality and/or data of a given visitor can be split into modular
units and composed to produce an equivalent visitor that is easier
to understand with pieces that are easier to reuse. In this section we
discuss some useful visitor combination operations in the context of
functional visitors and how they can be used to construct solutions.

For this discussion we introduce five forms of combination:
Conditional, Independent, Threaded, Fork, and Join. In general, the
structure of a combination is simply a visitor that is itself a pair of
visitors. We then add behavior to our pairings to produce the de-
sired composition. Figure 5 contains the semi-formal semantics of
our various visitor combinations using a mix of familiar functional
and object-oriented style syntax.

We use the functions
�����������
	

, and � to represent the con-
structors of Conditional, Independent, Threaded, Fork, and Join
combinations respectively. We use � to represent any specific con-
structor, when behavior must be known and reconstructed, and pair
when we only require knowledge of a combination’s structure.
In the syntax of our language we introduce five global construc-

DRAFT: September 19, 2007 @ 3:54 pm 3 2007/9/19

class ImperCheck extends Visitor{
int weight, violations;
Stack<Integer> stack = new Stack<Integer>();

ImperCheck(int w, int viol)
{ weight = w; violations = viol; }

void b e f o r e(Element e)
{ weight += e.weight; }

void b e f o r e(Container c)
{ stack.push(weight); }

void a f t e r (Container c){
int last = stack.pop();
if((weight - last) > c.capacity)

violations++;
}

}

visitor FuncCheck{
int weight, violations;

FuncCheck(int w, int viol)
{ weight = w; violations = viol; }

FuncCheck a f t e r (Element e, FuncCheck vis){
FuncCheck(vis.weight + e.weight,

vis.violations);
}
FuncCheck a f t e r (Container c, FuncCheck vis){

FuncCheck(vis.weight,
(vis.violations +
((vis.weight-weight) > c.capacity?1:0)));

}
}

Figure 4. Left: Standard visitor solution, Right: Functional visitor solution

For each visitor ������������������ �!�#"
� ��$ ���%��"'& we define the functional aspects of pairs on a given datatype (. We assume that the default
implementation of a method is the identity function. �)�*� �������+�,��	-� �.& captures the functional aspect of a given pair. We use the generic
constructor, pair /�0 � 0 1 , for pair structure with no functional aspects.

2 /43�5 � 376�1�89:���������;/4(�<2 /43>=5 � 3>=6 1�1@?BA9CEDF3>= =5HG 3I5�89:�����I���J/4(� 3>=5 13 = =6 GLK9M 3 = =5 D
NOC!PQ3 6 89:���������J/4(� 3 =6 1;C!A9R�CS3 =6 K P2 /43 = =5 � 3 = =6 1
T /43I5 � 376!1�89:�����I���J/4(� T /43>=5 � 3>=6 1�1@? T /43I5!89����������J/4(� 3>=5 1 � 376#8U����������J/4(� 3>=6 1�1

V /43 5 � 3 6 1�89:���������;/4(� V /43 = 5 � 3 =6 1�1@?BA9CEDF3 = =5 G 3 5 89:�����I���J/4(� 3 = 5 1 K PV /43 = =5 � 3 6 89:���������;/4(�JWI$#X "I/43 = =5 � 3 =6 1�1
Y /43�5 �.� /4376 � 3#Z[1�1�8U����������J/4(� Y /43>=5 �J� /43>=6 � 3>=Z 1�1�1F?BA9CEDF3>= =5HG 3I5�89:�����I���J/4(� 3>=5 1 K PY /43 6 8U����������J/4(�\WI$]X "�/43 = =5 � 3 =6 1 �3 Z 8U����������J/4(�\WI$]X "�/43 = =5 � 3 =Z 1�1
^ /`_a/43I5 � 3'6�1 � 3#Z[1�89:���������;/4(� ^ /`_a/43>=5 � 3>=6 1 � 3>=Z 1�1@?BA9CEDF3>= =5HG _a/43I5 � 3'6�1�89:�����I���J/4(� _a/43>=5 � 3>=6 1�1 K P^ /43>= =5 � 3#Z78U����������J/4(�\WI$]X "�/43>= =5 � 3>=Z 1�1�1 �

Figure 5. Semi-formal Combination Semantics

tors for creating combinations— CondPair, IndependPair,
ThreadedPair, ForkPair, JoinPair. The rest of this sec-
tion will explain the intuition behind the combinations and the
wrapper visitors used to encapsulate them.

5.1 Conditional Combination
When we develop more complex visitors we are sometimes re-
quired to combine multiple computations into a single visitor that
is less reusable. One example of this is the FuncCheck visitor in
Figure 4 where we have a single visitor performing at least three
interrelated functions. Most notably, we have hard-coded what to
do when we find an overfull container. The visitor we’ve created
would be more reusable if we could separate when from what; we
then have the option of combining a given when with different visi-
tors to suit our needs. To allow one visitor to control whether or not
another visitor’s methods are executed we introduce Conditional
Combination.

Here we use the first visitor of the pair to decide if the second
will be executed; if not, then it is equivalent to the identity function
for the second visitor. Either way the results are paired to become
the result of the combination’s visitor method. Using a conditional
combination we can design our container checker as an Overfull
visitor which can be composed with any number of other visitors.

To reproduce our original solution we use the simple Count visitor
from earlier (Section 3). The conditional Overfull visitor and
two resulting wrappers are shown in Figure 6.

The meaning of a Conditional Composition is listed in Figure 5,
where we elide the details of how the first visitor is converted
to a boolean, since this is implementation dependent. In our Java
implementation we use an extended functional visitor interface that
includes a continueVisit method to facilitate this, as defined
in the Overfull visitor.

Also in Figure 6 we use a conditional combination to create
wrappers, named Checker and Filter. The Checker wrap-
per does exactly the same job as our single FuncCheck visitor
(Figure 4). The name bindings of the visitors involved in the com-
bination, here full and count, helps pull apart the results of the
combination as shown in the two function definitions. Similarly,
Filter uses Overfull in combination with a simple container
collector, Collect. These visitors give us a modular and reusable
solution to our container checking problem, while the wrappers
provide further encapsulation. This makes it easier to use them
alone or in combination with other visitors without having to know
how they are implemented.

DRAFT: September 19, 2007 @ 3:54 pm 4 2007/9/19

visitor Overfull{
int weight;
boolean full;

Overfull(int w, boolean f){ weight = w; full = f; }
boolean continueVisit(){ full; }

Overfull a f t e r (Element e, Overfull vis)
{ Overfull(vis.weight+e.weight, false); }
Overfull a f t e r (Container c, Overfull vis)
{ Overfull(vis.weight,

(vis.weight-weight) > c.capacity); }
}

visitor Collect{
List<Container> list;
Collect(){ this(Empty<Container>()); }
Collect(List<Container> l){ list = l; }

Collect a f t e r (Container c, Collect vis)
{ Collect(Cons<Container>(c, vis.list)); }

}

wrapper Checker
<full, count> = CondPair(Overfull(0, false), Count(0))

{
int totalWeight(){ full.weight; }
int getViolations(){ count.total; }

}

wrapper Filter
<full, result> = CondPair(Overfull(0, false),

Collect())
{ List<Container> getList(){ result.list; } }

Figure 6. Modular visitors with Checker and Filter wrappers

5.2 Independent Combination
Often problems require multiple separate calculations over the
same traversal. For instance, many programming language related
problems require calculation of unrelated attributes over a graph-
like representation of program text— usually called an Abstract
Syntax Tree. In cases where we wish to compute multiple inde-
pendent results from a given object collection it would normally
require one pass for each visitor’s results. Assuming we have in-
dependent visitors that require no inter-communication, we can
simply combine them using an Independent Combination.

The results of the composition’s visitor methods is simply a
re-pairing of the individual results of each visitor. More than two
visitors can be combined by nesting pairs forming a binary tree.
The result of a traversal can then be decomposed into its individual
visitor results to be part of further computation using a wrapper or
within another combination.

5.3 Threaded Combination
Sometimes when we separate visitor functionality we would like to
use the computation of a given visitor as an intermediate result in
a larger context. To facilitate this kind of modular communication
we define a few combinations which allow a visitor to accept, or
receive, another visitor in its methods. These last few combinations
place additional constraints on the second visitor of a pair, called
the receiver, which gives us the ability to pass on, separate, and
combine visitors in whatever way we find useful for our solution.

Threaded Combination refers to the connection between a sin-
gle visitor and a single receiver. In Figure 5 we show the meaning
of this combination; pairing the result of the first visitor with the
earlier result of the second, and passing this pair to the second vis-
itor’s method. This is useful when we want to be able to develop
and test functionality separately, then chain visitors together to get
our final result.

5.4 Fork Combination
As with Threaded Combination, there are times when we would
like to pass the results of a single visitor to another. In the case
of a Fork Combination we we want to pass a single visitor to an
independent pair of receivers. The result of the first visitor is passed
to both receivers in the nested pair. We can use this combination to
split a single computation into two paths without performing the
first visitor’s method twice. The meaning of a Fork Combination
is also described in Figure 5; it is essentially an extension of the
Threaded Combination to multiple receivers.

5.5 Join Combination
Much like the usage of a Fork Combination to split visitor compu-
tation, we introduce the Join Combination to combine the results of
two visitors into a single receiver. Much like Threaded Combina-
tion, the receiver must accept a pair of visitors as its second argu-
ment to before and after, but the left visitor of the pair is expected
to also be a pair of visitors. The formal specification is described
in Figure 5. We use our visitor language bindings to unfold the var-
ious argument pairs and access them in the body of the receiver’s
methods.

5.6 Combination Wrappers
When using visitors composed of many parts it is often the case that
we can abstract details of a combination to hide them from clients.
To encapsulate visitor compositions we introduce the idea of a
wrapper: a visitor which hides the details of a constructed visitor
through method delegation. In general we can create a wrapper for
any visitor, but they will usually be used to wrap combinations.
This allows us to manage larger visitors without having to deal with
composition details.

Figure 6 shows two simple wrappers, Checker and Filter.
The pair, <full, count>, is constructed by the given expres-
sion, in this case a Conditional Combination, which binds full
to the left visitor of the pair, of type Overfull, and count to
the right visitor, of type Count. These names are then available
throughout the wrapper’s method definitions that follow, as seen in
the functions defined within Checker and Filter.

It is possible to parameterize the wrapper construction expres-
sion with an argument list; e.g., both ClauseReduce and For-
mulaReduce wrappers (Figure 9) accept a Lit argument during
construction. The details of how these arguments are used depends
on our implementation language, but in general they will become
arguments to a single constructor. This is reflected in the construc-
tion expression of FormulaReducewhere we use the given Lit
to construct a ClauseReduce. Once we have constructed a wrap-
per, its semantics is just the semantics of the wrapped visitor or
combination given in the construction expression. This allows us
to simplify complex visitors and limit exposed details through the
definition of methods. In the next section we show a larger, more
complicated example where these wrappers help control the com-
plexity of our visitors.

6. Extended Example: SAT Reduction
As a more complicated example that effectively shows the advan-
tages of functional visitors using our language we present an impor-
tant portion of a SAT solver. The satisfiability problem is one of the
first problems proven to be NP-Complete [4] and there has been
much research into solving various incarnations of it effectively.
For this example we will focus on a typical description where a
SAT formula is given in conjunctive normal form (CNF); a For-
mula is a list of clauses, a Clause is a list of literals (Lit), and
a Lit is either true, false, or a signed variable: a wrapped Var,
which can be positive, Pos, or negated, Neg. We choose unique

DRAFT: September 19, 2007 @ 3:54 pm 5 2007/9/19

integers as our representation of variables and make a few adjust-
ments to increase efficiency. Using these structures, the formula/�/�bdcfe@g#1\hi/`eFj,cfg#1�1 could be represented as:

Formula(Clause(Pos(Var(1)), Neg(Var(2))),
Clause(Neg(Var(3)), Pos(Var(2))))

Our task: given an assignment to a variable– essentially, a literal
is an assignment of a single variable– reduce the literals within
each clause based on boolean logic and a simple function reduce.
The first argument to reduce is the literal representing a single
assignment, the second is a Pos or Neg literal we wish to reduce.
The reduction cases are shown in Figure 7. Note that when the two
literals are the same reduce produces true; if they refer to the same
variable but differ in sign it produces false; otherwise it returns the
original literal.

"��
�]kOl��>/`_,�]m'/43I1 � _��#m#/43I1�1 G �4"�kO�"
���#k�l���/%nQ�poq/43I1 � nr�pos/43I1�1 G �4"�kO�"
���#k�l��I/%nQ�`os/43I1 � _��#m#/43I1�1 G � $7t mE�"
���#k�l��I/`_��#m7/43I1 � nr�pos/43I1�1 G � $7t mE�"
���#k�l��>/ u � u = 1 G u = KvM uxw#POyQu = y�z�POz]D.{
C M CE{D
z�D
NOCdR
w#|�Cx}7w[{ K w#~OA9C
Figure 7. Single Literal Reduction

One strategy for solving SAT instances is to successively reduce
literals in a given CNF formula based on some ordering of vari-
able assignments. After we have reduced all literals to true or false
we check if this ordering produced a satisfying assignment based
on the usual boolean rules of conjunction and disjunction. We can
then modify our assignment and ordering to limit our search space
and reduce based on any new information learned. It would, how-
ever, be rather inefficient to continue reducing disjunctions which
already contain the literal true; for this situation we introduce a
new Clause variant, AllTrue. To help in the identification of
unsatisfying assignments we introduce a final variant AllFalse
for clauses which only contain the literal false. Thus, we no longer
need true and false literals in our implementation; they simply help
in our understanding of the problem.

Now we can think of how to solve the reduction problem us-
ing a collection of visitors; for this discussion we will define the
process by which we produce a reduced Formula given a Lit
representing a single variable assignment.

Figure 8 contains a version of our basic SAT reduction visitors.
These are the results of thinking about each step of the reduction
process and choosing a level of abstraction that balances complex-
ity and composition. Much like the division of functional abstrac-
tions when writing a program, we can organize our compositions
and wrappers at different levels to increase clarity, modularity, and
reusability. We start with a discussion of the individual visitors, and
later see how these are combined into wrappers to form our final
FormulaReduce visitor.

Each visitor performs a simple action to produce various val-
ues. ClauseTrue tracks whether or not the current Clause–
disjunction– has been forced to true by some Lit reduction, stor-
ing this as a boolean. To make the visitor flexible we parameterize
it over the current target Lit (or assignment), passing it through
to any ClauseTrues we construct. Before an AllTrue clause
we set the boolean value to true, for any other Clause we set it
to false; checking after each literal whether it is the same as the
target which corresponds to the first two reduce rules in Figure 7.
LitReduce performs the reduction of a single literal by seeing if
they refer to the same variable: if so then we produce null, other-
wise we keep it— null signals to ListBuilder that the object
should be skipped. In the case that the assignment literal and the

current Lit refer to the same variable, then it would reduce to true
or false as in the first four cases of reduce. Either way we can ignore
the Lit: if true then ClauseTrue will keep track of it to eventu-
ally produce and AllTrue clause; if false we use the boolean rule
for disjunction: /9� $7t mE��ci�H1���� . If the two Lits do not refer to
the same variable then we store the literal for the ListBuilder
to collect, corresponding to the last case of reduce.

ListBuilder is parameterized over two types, Targ and
Reset; Targ is the type of objects we wish to collect and and
Reset triggers us to restart the list building. The corresponding
before and after methods collect non-null Targ objects and reset
the list to Empty respectively. ListBuilder is assumed to be
composed with an ObjectGetter; we use this visitor as a simple
interface to enable ListBuilder to be as reusable and generic as
possible. For example, we could use this ListBuilder in place
of our Collector, in combination with a simple ObjectGet-
ter and our Overfull from earlier to collect all overfull con-
tainers.

Note that the receiver, ListBuilder, declares the type it ex-
pects to receive, ObjectGetter, to be a single visitor not a pair,
implying that it will take part in a Threaded Combination. In gen-
eral, we can make sure that the types of all combinations, receivers,
and wrappers are correct by checking the various expectations of
each visitor involved.

Figure 9 shows the rest of our reduction visitors and wrappers.
The first receiver, ClauseMaker, receives a pair of ClauseTrue
and a combination involving a ListBuilder; ‘?’ is a wild-card
that means any visitor type. The after method pulls apart the struc-
ture of the combinations and sees which type of clause should be
made; the AllTrue and plain Clause cases are as discussed ear-
lier. An AllFalse clause is created when the reduced clause is
not AllTrue and the list of Lits is empty, meaning each literal
could have only been reduced to false.

To help us manage the complexity of FormulaReduce we
introduce the intermediate ClauseReduce wrapper. The only
interesting portion of the combination, from ClauseReduce’s
point of view, is the ClauseMaker which is bound to clsMk.
We make the newly reduced clause available to another list
builder by overriding getObject. When finally composed with a
ListBuilderwe can produce a list of Clauses which can then
be converted into a Formula. A FormulaMaker is a receiver
that performs this conversion; much like ClauseMaker, its after
method pulls out the list of Clauses and produces a Formula.
Our final task is to give a wrapper which constructs the combination
correctly and provides functions to access the results. Formula-
Reduce does just that; we can now construct it by providing a Lit
which represents our single Var assignment.

One thing to note about this example is the conceptual simplic-
ity of the individual visitors; once we understand how combina-
tions can be built and how visitors involved can communicate, we
can separate and modularize our functionality. This allows us to
develop pieces of a solution which are easier to write, test, under-
stand, and later reuse.

7. Related Work
Adaptive Programming (AP) [11] allows for the separation of
traversal related concerns into three parts; (i) the data structure
to be traversed, (ii) a navigation specification (or strategy), and (iii)
an imperative visitor with before and after methods. The three AP
tools DemeterJ [21], DJ [13], and DAJ [17], provide different im-
plementations of AP in Java. DemeterJ is a source manipulation
that uses domain specific languages and the visitor design pattern,
DJ uses reflection to dynamically traverse a collection of objects,
and DAJ uses Aspect Oriented Techniques [5, 1], AspectJ [2] in-
troductions, to provide the necessary traversal methods in the class

DRAFT: September 19, 2007 @ 3:54 pm 6 2007/9/19

visitor ObjectGetter<T>{ T getObject(){ null; } }

visitor ClauseTrue{
boolean clause;
Lit targ;

ClauseTrue(Lit t){ this(t,false); }
ClauseTrue(Lit t, boolean b){ clause = b; targ = t; }

ClauseTrue b e f o r e(AllTrue allT, ClauseTrue vis)
{ ClauseTrue(targ, true); }

ClauseTrue b e f o r e(Clause cls, ClauseTrue vis)
{ ClauseTrue(targ, false); }

ClauseTrue a f t e r (Lit lit, ClauseTrue vis)
{ ClauseTrue(targ, vis.clause || (targ.equals(lit))); }

}

visitor LitReduce extends ObjectGetter<Lit>{
Lit targ, current;

LitReduce(Lit t, Lit curr){ targ = t; current = curr; }

LitReduce a f t e r (Lit lit, LitReduce vis)
{ LitReduce(targ, if (targ.sameVar(lit)) then null else lit); }

Lit getObject(){ current; }
}

receiver ListBuilder<Targ, Reset> of ObjectGetter<Targ>{
List<Targ> list;

ListBuilder(){ this(Empty<Targ>()); }
ListBuilder(List<Targ> l){ list = l; }
ListBuilder(Targ first, ListBuilder<Targ, Reset> old)

{ this(Cons<Targ>(first, old.list)); }

// Check for ’Reset’
ListBuilder<Targ, Reset> b e f o r e(Reset obj, <getter, builder>){

ListBuilder<Targ, Reset>();
}
// Check for ’Build’
ListBuilder<Targ, Reset> a f t e r (Targ obj, <getter, builder>){

Targ toAdd = getter.getObject();
if (toAdd != null)
then ListBuilder<Targ, Reset>(toAdd, builder)
else builder;

}
}

Figure 8. Base SAT Reduction Visitors

hierarchy. The abstraction of traversal paths using strategies allows
modifications to the data structure (under certain constraints [16])
without affecting visitor behavior. Composition of visitors in AP
tools is achieved by attaching an array of visitors to a strategy. By
default visitors are executed in position order, however, a different
execution order can be encoded as a collaboration between visitors.
This results in combinations and individual visitor implementations
that become tangled and more difficult to reuse.

In [20] a functional visitor implementation for DJ is presented
where around visitor methods are introduced that take two argu-
ments: the first is the object type that the method will be called
on, the second argument is a new type–Subtraversal. A Sub-
traversal captures the current context of the traversal providing
additional navigation control. A combine method is used to pro-
vide default behavior for the around method. The values returned
from visitors and sub-traversals are unrestricted, in fact they are
typically of type Object, forcing runtime checks for cases where
the visitor could return more than one type of value. Combinations
of visitors are not explicitly discussed, however, one can imagine
compositions where the return values of one visitor are used as in-
put to another visitor, but the lack of type information and the use
of downcasting would make combinations less reusable and error
prone.

Work by Visser [18] addresses composition and traversal con-
trol in visitors. Given a small set of combinators (e.g. Identity, Se-
quence, Choice etc.) these can be composed to obtain more com-
plicated visitors with different traversal strategies (e.g. top down,
bottom up, conditional etc.). The fact that traversal navigation spec-
ification and the visitor composition are combined and visitor com-
positions cannot be hidden when reused limits the effectiveness of
visitor compositions and reduces modularity.

Ovlinger and Wand [14] propose a domain specific language
as a means to specify recursive traversals of object structures used
with the visitor pattern [7]. The domain specific language further al-
lows for the addition of arguments to traversal methods and combi-
nation of intermediate results from sub-traversals supporting func-
tional style traversal and visitor-like definitions. The language pro-
vides traversal flexibility at a higher level than hand-coded traver-
sals, but is not robust with respect to data structure changes, unlike
AP. Though the concept of functional style visitors and composi-
tion are not discussed fully, we have adapted the language for spec-
ifying our functional visitor traversals as an alternative to hand-
coded or dynamic methods of traversal.

There have been a number of simple extensions to the original
definition of the Visitor Pattern [7] but do not address visitor com-
binations explicitly.

DRAFT: September 19, 2007 @ 3:54 pm 7 2007/9/19

receiver ClauseMaker of <ClauseTrue, <?, ListBuilder<Lit, Clause>>>{
Clause cls;

ClauseMaker(){ cls = null; }
ClauseMaker(Clause c){ cls = c; }
ClauseMaker(List<Lit> l){ this(Clause(l)); }

ClauseMaker a f t e r (Clause cls, <<clsTrue, <?, builder>>, clsMk>){
if(clsTrue.clause)
then Clausereduce(AllTrue()) // This disjunction is all True
else if(builder.list.isEmpty())

then ClauseMaker(AllFalse()) // All Lits reduced, none were True
else ClauseMaker(Clause(builder.list)); // Unassigned Lits remain

}
}

wrapper ClauseReduce extends ObjectGetter<Clause>
< < clsTrue, < litRed, buildCls>>, clsMk>(Lit lit) =
(JoinPair(IndependPair(ClauseTrue(lit),

ThreadedPair(LitReduce(lit, null),
ListBuilder<Lit, Clause>())),

ClauseMaker()))
{ Clause getObject(){ clsMk.clause; } }

receiver FormulaMaker of ListBuilder<Clause, Formula>{
Formula form;

FormulaMaker(){ form = null; }
FormulaMaker(List<Clause> lst){ form = Formula(lst); }

FormulaMaker a f t e r (Formula form, <builder, formMk>)
{ FormulaMaker(builder.list); }

}

wrapper FormulaReduce
< < clsRed, buildForm>, formMk>(Lit lit) =
(ThreadedPair(ThreadedPair(ClauseReduce(lit),

ListBuilder<Clause, Formula>()),
FormulaMaker()))

{ Formula getFormula(){ formMk.form; } }

Figure 9. SAT Reduction Receivers and Wrapper Combinations

Vlissides [19] presents the staggered visitor that allows mod-
ification of the visited structure without the changing of existing
visitors. The most generic visitor provides a general visit method,
referred to as the catch-all operation, that delegates according to the
visited object’s specific type. The catch-all behavior can be overrid-
den to accommodate new elements in the visited data structure and
delegate to other visitors, however, visitor combinations are not ad-
dressed.

Similarly, the acyclic visitor [12] deploys multiple inheritance
to break the cyclic dependency between elements and visitors. At
the top of the visitor hierarchy we find an empty virtual visitor
class. Each visitor is required to provide a new abstract class that
extends the empty visitor and introduces visit methods for each
data-type that it manipulates and accept methods use dynamic
dispatch to execute the appropriate visitor methods. Combination
of visitor behavior is achieved through multiple inheritance, but
the hierarchy becomes proliferated as each visitor requires a new
concrete and abstract classes.

SableCC [6] uses a variation of the hierarchical visitor [3] with a
generic visitor interface that contains no methods. Each new struc-
ture element extends this interface and provides a case-like method
for the new variant. Each variant then provides the appropriate cast
operation to the argument in its visit method (in SableCC this is
called apply). A default visit method is also generated which can
be further specialized through inheritance minimizing the effect of
visited data structure extensions on existing visitors.

With the same goals as visitors in object oriented programming,
the Scrap your Boilerplate (SyB) series of papers [8, 9, 10] present
a lightweight approach to generic programming in Haskell based

on data structure traversals and combinations. The goal of SyB
is to automatically write code that traverses data structure while
the developer provides functions that perform operations on them.
Generic traversal functions take a combinator that specifies which
of the nodes in the data structure a given function should be applied
to. The traversal combinator’s argument is itself a function, a type
extender, that takes the function to be called at each node as an
argument. The type extender function behaves as its argument
function when applied to nodes of interest and as the identity
function when applied to uninteresting nodes. Interesting nodes are
the nodes whose types match the argument type of the function
given to the type-extender.

Functional visitors take a similar approach by encapsulating a
group of functions, over interesting data types, into a single visitor.
Because SyB provides a very general collection of strategies, there
is less context information available to traversal functions, which
reduces their flexibility.

8. Conclusion and Future Work
We present a modification to the classic visitor pattern that provides
a functional style visitor definition, which increases the amount of
context information available to visitors during traversal. We show
how this can be used to better modularize visitor functionality by
introducing a visitor-oriented language for constructing visitors and
their combinations. We also describe five general visitor combina-
tions and describe how these can be used to encapsulate simple,
modular, component-like visitors that are both flexible and extensi-
ble, while remaining independent of traversal specifications.

DRAFT: September 19, 2007 @ 3:54 pm 8 2007/9/19

We are currently working on the formalization of our functional
visitor language, concentrating on visitor combinator semantics
and type inference. In addition we would like to explore various
visitor and combination optimization strategies that are generally
associated with functional and applicative programming. As part
of our implementation we would like to be able to automatically
generate many useful functional visitors for data structures, e.g.,
Copy and Print, as most AP tools do. After finishing the com-
plete language definition we would also like to compare our visitors
to programming styles used in different functional languages, such
as Scrap your Boilerplate [8, 9, 10].

References
[1] Aspect oriented software design, http://www.aosd.net.

[2] The AspectJ project, http://www.eclipse.org/aspectj.

[3] The pattern index, http://c2.com/cgi/wiki?HierarchicalVisitorPattern.

[4] S. A. Cook. The complexity of theorem-proving procedures. In STOC
’71: Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158, New York, NY, USA, 1971. ACM Press.

[5] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005.

[6] E. M. Gagnon and L. J. Hendren. Sablecc, an object-oriented compiler
framework. In TOOLS ’98: Proceedings of the Technology of Object-
Oriented Languages and Systems, page 140, Washington, DC, USA,
1998. IEEE Computer Society.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[8] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. ACM SIGPLAN Notices,
38(3):26–37, 2003. Proceedings of the ACM SIGPLAN Workshop
on Types in Language Design and Implementation (TLDI 2003).

[9] R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2004),
pages 244–255. ACM Press, 2004.

[10] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class:
extensible generic functions. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2005),
pages 204–215. ACM Press, Sept. 2005.

[11] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company,
Boston, 1996. 616 pages, ISBN 0-534-94602-X.

[12] R. C. Martin. Pattern languages of program design 3, chapter Acyclic
Visitor, pages 93–103. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[13] D. Orleans and K. J. Lieberherr. DJ: Dynamic Adaptive Programming
in Java. In Reflection 2001: Meta-level Architectures and Separation
of Crosscutting Concerns, Kyoto, Japan, September 2001. Springer
Verlag. 8 pages.

[14] J. Ovlinger and M. Wand. A language for specifying recursive
traversals of object structures. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 70–81, New York, NY,
USA, 1999. ACM Press.

[15] J. Palsberg and C. B. Jay. The essence of the visitor pattern. In
COMPSAC ’98: Proceedings of the 22nd International Computer
Software and Applications Conference, Washington, DC, USA, 1998.

[16] T. Skotiniotis, J. Palm, and K. Lieberherr. Demeter Interfaces:
Adaptive programming without surprises. In European Conference
on Object Oriented Programming, 2006.

[17] The Demeter Group. The DAJ website. http://www.ccs.neu.edu/
research/demeter/DAJ, 2005.

[18] J. Visser. Visitor combination and traversal control. In Object-
Oriented Programming Systems, Languages and Applications
Conference, in Special Issue of SIGPLAN Notices, pages 270–282.
ACM, October 2001.

[19] J. Vlissides. Pattern hatching - visitor in frameworks. In The C++
report, November/December 1999.

[20] P. Wu, S. Krishnamurthi, and K. Lieberherr. Traversing recursive
object structures: The functional visitor in demeter. In AOSD
2003, Software engineering Properties for Languages and Aspect
Technologies (SPLAT) Workshop, 2003.

[21] The DemeterJ website. http://www.ccs.neu.edu/research/
demeter.

DRAFT: September 19, 2007 @ 3:54 pm 9 2007/9/19

